new characterization of some linear ‎groups‎

Authors

a. khalili ‎asboei‎

r. mohammadyari

m. rahimi-esbo

abstract

‎there are a few finite groups that are determined up to isomorphism solely by their order, such as $mathbb{z}_{2}$ or $mathbb{z}_{15}$. still other finite groups are determined by their order together with other data, such as the number of elements of each order, the structure of the prime graph, the number of order components, the number of sylow $p$-subgroups for each prime $p$, etc. in this paper, we investigate the possibility of characterizing the projective special linear groups $l_{n}(2)$ by simple conditions when $2^{n}-1$ is a prime number. our result states that: $gcong l_{n}(2)$ if and only if $|g|=|l_{n}(2)|$ and $g$ has one conjugacy class length $frac{|l_{n}(2)|% }{2^{n}-1}$, where $2^{n}-1=p$ is a prime number. furthermore, we will show that thompson's conjecture holds for the simple groups $l_{n}(2)$, where $2^{n}-1$ prime is a prime number. by thompson's conjecture if $l$ is a finite non-abelian simple group, $g$ is a finite group with a trivial center, and the set of the conjugacy classes size of $l$ is equal to $g$, then $lcong g$‎.‎

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

NSE characterization of some linear groups

‎For a finite group $G$‎, ‎let $nse(G)={m_kmid kinpi_e(G)}$‎, ‎where $m_k$ is the number of elements of order $k$ in $G$‎ ‎and $pi_{e}(G)$ is the set of element orders of $G$‎. ‎In this paper‎, ‎we prove that $Gcong L_m(2)$ if and only if $pmid |G|$ and $nse(G)=nse(L_m(2))$‎, ‎where $min {n,n+1}$ and $2^n-1=p$ is a prime number.

full text

New characterization of some linear ‎groups‎

‎There are a few finite groups that are determined up to isomorphism solely by their order, such as $mathbb{Z}_{2}$ or $mathbb{Z}_{15}$. Still other finite groups are determined by their order together with other data, such as the number of elements of each order, the structure of the prime graph, the number of order components, the number of Sylow $p$-subgroups for each prime $p$, etc. In this...

full text

synthesis and characterization of some new cyclometalated organoplatinum(ii) complexes containing phosphite ligand

در این تحقیق روشی جهت سنتز یک سری از کمپلکس های پلاتین (ii) حاوی لیگاند های دهنده ی فسفری شامل فسفیت و فسفین ارائه شده است. واکنش پیش ماده ی پلاتین (ii)،trans/cis- [ptcl2(sme2)2] ، با 2 اکی مولار از لیگاند p(oph)3در حلال بنزن کمپلکس1، cis-[ptcl2(p(oph)3)2] را تولید می نماید. جهت سنتز کمپلکس سایکلو متال فسفیتی، کمپلکس 1 با 1 اکی والان واکنشگر ptcl2 در حلال زایلن در شرایط رفلاکس زیر گاز آرگون م...

synthesis and characterization of some macrocyclic schiff bases

ماکروسیکلهای شیف باز از اهمیت زیادی در شیمی آلی و دارویی برخوردار می باشند. این ماکروسیکلها با دارابودن گروه های مناسب در مکانهای مناسب می توانند فلزاتی مثل مس، نیکل و ... را در حفره های خود به دام انداخته، کمپلکسهای پایدار تولید نمایند. در این پایان نامه ابتدا یک دی آلدئید آروماتیک از گلیسیرین تهیه می شود و در مرحله بعدی واکنش با دی آمینهای آروماتیک و یا آلیفاتیک در رقتهای بسیار زیاد منجر به ت...

15 صفحه اول

Characterization of some projective special linear groups in dimension four by their orders and degree patterns

‎Let $G$ be a finite group‎. ‎The degree pattern of $G$ denoted by‎ ‎$D(G)$ is defined as follows‎: ‎If $pi(G)={p_{1},p_{2},...,p_{k}}$ such that‎ ‎$p_{1}

full text

A New Characterization of Some Alternating and Symmetric Groups

We suppose that p = 2α3β +1, where α ≥ 1, β ≥ 0, and p ≥ 7 is a prime number. Then we prove that the simple groups An, where n = p,p+1, or p+2, and finite groups Sn, where n = p,p+1, are also uniquely determined by their order components. As corollaries of these results, the validity of a conjecture of J. G. Thompson and a conjecture of Shi and Bi (1990) both on An, where n= p,p+1, or p+2, is o...

full text

My Resources

Save resource for easier access later


Journal title:
international journal of industrial mathematics

Publisher: science and research branch, islamic azad university, tehran, iran

ISSN 2008-5621

volume 8

issue 2 2016

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023